Data Mining & Pred Analytics
Durham
Engineering&Physical Sciences :: Mathematics&Statistics
Online Course Delivery Method: Scheduled meeting time, Online (no campus visits), EUNH
Credits: 3.0
Term: Spring 2021 - Full Term (02/01/2021 - 05/11/2021)
Grade Mode: Letter Grading
Term: Spring 2021 - Full Term (02/01/2021 - 05/11/2021)
Grade Mode: Letter Grading
Class Size:
20
CRN: 53130
CRN: 53130
An introduction to supervised and unsupervised methods for exploring large data sets and developing predictive models. Unsupervised methods include: market basket analysis, principal components, clustering, and variables clustering. Important statistical and machine learning methods (supervised learning) include: Classification and Regression Tress (CART), Random Forests, Neural Nets, Support Vector Machines, Logistic Regression and Penalized Regression. Additional topics focus on metamodeling, validation strategies, bagging and boosting to improve prediction or classification, and ensemble prediction from a set of diverse models. Required case studies and projects provide students with experience in applying these techniques and strategies. The course necessarily involves the use of statistical software and programming languages. Students must have completed a calculus-based introductory statistics course.
Section Comments: This course is a synchronous online course. In-class exams may be scheduled; for remote access of these, contact the instructor.
Department Approval Required. Contact Academic Department for permission then register through Webcat.
Instructors: STAFF
Times & Locations
Start Date | End Date | Days | Time | Location |
---|---|---|---|---|
2/1/2021 | 5/11/2021 | MW | 12:40pm - 2:00pm | ONLINE |